Ir al contenido

Laboratorio de Procesamiento de Minerales

Descripción

El laboratorio cuenta con 385 m2 para investigación y docencia. Tiene asignado un técnico de jornada completa y atiende tres cursos de pregrado por semestre, con una media de 45 estudiantes por semestre. Las instalaciones son utilizadas para apoyar el desarrollo temas de investigación, tesis de postgrado y de memorias de título relacionadas con procesos de concentración de minerales.

Equipamiento e instrumentos

  • Equipos para muestreo
  • Chancadores, molinos y pulverizadores
  • Set de ciclonaj
  • Harnero vibratorio
  • Celdas de flotación batch de laboratorio
  • Columna piloto de flotación
  • Molino de bond
  • Separador magnético
  • Set de filtración
  • Picnómetros y balanzas de precisión
  • Sistemas avanzados de adquisición y procesamiento de datos

Miembros permanentes

  • Prof. Willy Kracht

Teléfonos: +562 29784506 - +562 29784495
Correo electrónico: wkracht@ing.uchile.cl

  • Prof. Pía Lois

Teléfonos: +562 29784495
Correo electrónico: plois@ing.uchile.cl

  • Prof. Christian Ihle

Teléfono; +562 29784991
Correo electrónico: cihle@ing.uchile.cl

  • Tec. Anisse Pizarro

Teléfonos: +562 29784909
Correo electrónico: apizarro@ing.uchile.cl

Académico responsable

Prof. Willy Kracht
Teléfonos: +562 29784506 - +562 29784495
Correo electrónico: wkracht@ing.uchile.cl

Publicaciones

  • Avalos, S., Kracht, W., and Ortiz, J. M. (2020a). An LSTM Approach for SAG Mill Operational Relative-Hardness Prediction. Minerals, 10:734
  • Avalos, S., Kracht, W., and Ortiz, J. M. (2020b). Machine Learning and Deep Learning Methods in Mining Operations: a Data-Driven SAG Mill Energy Consumption Prediction Application. Mining, Metallurgy & Exploration, 37:1197–1212
  • San Martín, F., Kracht, W., and Vargas, T. (2020a). Attachment of Acidithiobacillus ferrooxidans to pyrite in fresh and saline water and its fitting to Langmuir and Freundlich isotherms. Biotechnology Letters, pages 1–8
  • Ortiz, J. M., Kracht, W., Pamparana, G., and Haas, J. (2020). Optimization of a SAG mill energy system: integrating rock hardness, solar irradiation, climate change, and demand-side management. Mathematical Geosciences, 52:355–379
  • San Martín, F., Kracht, W., Vargas, T., and Rudolph, M. (2020b). Mechanisms of pyrite biodepression with Acidithiobacillus ferrooxidans in seawater flotation. Minerals Engineering, 145:106067
  • Pamparana, G., Kracht,W., Haas, J., Ortiz, J.M., Nowak,W., and Palma-Behnke, R. (2019a). Studying the integration of solar energy into the operation of a semi-autogenous grinding mill. Part I: Framework, model development and effect of solar irradiance forecasting. Minerals Engineering, 137:68–77
  • Pamparana, G., Kracht, W., Haas, J., Ortiz, J. M., Nowak, W., and Palma-Behnke, R. (2019b). Studying the integration of solar energy into the operation of a semi-autogenous grinding mill. Part II: Effect of ore hardness variability, geometallurgical modeling and demand side management. Minerals Engineering, 137:53–67
  • Díaz, E., Pamparana, G., Voisin, L., Kracht, W., and Martínez, P. (2019). Exploring the effect of the geological texture at meso and micro scale on grinding performance. Minerals Engineering, 144:106032
  • Reyes, C., Álvarez, M., Ihle, C. F., Contreras, M., and Kracht, W. (2019). The influence of seawater on magnetite tailing rheology. Minerals Engineering, 131:363–369
  • Díaz, E., Voisin, L., Kracht, W., and Montenegro, V. (2018). Using advanced mineral characterisation techniques to estimate grinding media consumption at laboratory scale. Minerals Engineering, 121:180–188
  • San Martín, F., Kracht, W., and Vargas, T. (2018). Biodepression of pyrite using Acidithiobacillus ferrooxidans in seawater. Minerals Engineering, 117:127–131
  • Ihle, C. F. and Kracht,W. (2018). The relevance of water recirculation in large scale mineral processing plants with a remote water supply. Journal of Cleaner Production, 177:34–51
  • Pamparana, G., Kracht, W., Haas, J., Díaz-Ferrán, G., Palma-Behnke, R., and Román, R. (2017). Integrating photovoltaic solar energy and a battery energy storage system to operate a semi-autogenous grinding mill. Journal of Cleaner Production, 165:273–280
  • Kracht, W. and Moraga, C. (2016). Acoustic measurement of the bubble Sauter mean diameter d32. Minerals Engineering, 98:122–126
  • Mesa, D., Kracht, W., and Díaz, G. (2016b). Textural image classification of foams based on variographic analysis. Minerals Engineering, 98:52–59
  • Kracht, W., Orozco, Y., and Acuña, C. (2016). Effect of surfactant type on the entrainment factor and selectivity of flotation at laboratory scale. Minerals Engineering, 92:216–220
  • Kracht, W. and Hunt, C. (2016). Indirect measurement of frother concentration based on l-CCC curves. Minerals Engineering, 92:110–113Trewhela, T., Ihle, C. F. , Tamburrino, A., 2014. “Numerical simulations of comminution slurries over complex topographies: putting together CFD and pipeline integrity”. Minerals Engineering 63. 139-148.
  • Ihle, C. F., Tamburrino, A., Montserrat, S., 2014. Computational modeling for efficient long distance ore transport using pipelines. Minerals Engineering 63. 73-80.
  • Ihle, C. F., 2014. “Should maximum pressures in ore pipelines be computed out of system startups or power outages?” Minerals Engineering 55. 57-59.
  • Kracht, W., Rebolledo, H., 2013. “Study of the local critical coalescence concentration (l-CCC) of alcohols and salts at bubble formation in two-phase systems”. Minerals Engineering 50-51. 77-82.
  • Kracht, W., Emery, X., Paredes, C., 2013. “A stochastic approach for measuring bubble size distribution via image analysis”. International Journal of Mineral Processing 121. 6-11.
  • Ihle, C. F., Montserrat, S., Tamburrino, A., 2013. “A cost perspective for long distance ore pipeline operation. Part II: effect of input parameter variability”. International Journal of Mineral Processing 122. 54-58
  • Ihle, C. F., 2013. “A cost perspective for long distance ore pipeline operation. Part I: base optimal values”. International Journal of Mineral Processing 122. 1-12.
  • Tamburrino, A., Ihle, C. F., 2013. “Roll wave appearance in bentonite suspensions flowing down inclined planes”. Journal of Hydraulic Research 51. 330-335.
  • Ihle, C. F., Tamburrino, A., Vivero, P., 2013. “Effect of sample manipulation on the Couette rheometry of copper concentrates”. Powder Technology 239. 78-85.
  • Emery, X., Kracht, W., Garrido, F., Egaña, A., 2012. “Using two-point set statistics to estimate the diameter distribution in Boolean models with circular grains”. Mathematical Geosciences 44 (7). 805-822.
  • Ihle, C. F., Tamburrino, A., 2012. “Variables affecting energy efficiency in turbulent ore concentrate pipeline transport”. Minerals Engineering 39. 62–70.
  • Ihle, C. F., Tamburrino, A., 2012. “A note on the Buckingham equation”. Canadian Journal of Chemical Engineering 90. 944–945.
  • Ihle, C. F., Tamburrino, A., 2012. “Uncertainties in key transport variables in homogeneous slurry flows in pipelines”. Minerals Engineering 32: 54–59.
  • Kracht, W., Finch, J.A., 2010. “Effect of frother on initial bubble shape and velocity”, International Journal of Mineral Processing 94 (3-4), 115-120.
  • Suazo, C.J., Kracht, W., Alruiz, O.M., 2010. “Geometallurgical modelling of the Collahuasi flotation circuit”, Minerals Engineering 23 (2), 137-142.
  • Kracht, W., Finch, J.A., 2009. "Bubble break-up and the role of frother and salt", International Journal of Mineral Processing 92, 153-161.
  • Kracht, W., Finch, J.A., 2009. "Using sound to study bubble coalescence", Journal of Colloid and Interface Science 332 (1), 237-245.
  • Kracht, W., Gomez, C.O., Finch, J.A., 2008. "Controlling bubble size using a frit and sleeve sparger". Minerals Engineering 21 (9). 660-663. 
  • Quinn, J.J., Kracht, W., Gomez, C.O., Gagnon, C., Finch, J.A., 2007, "Comparing the effect of salts and frother (MIBC) on gas dispersion and froth properties", Minerals Engineering, 20 (14), 1296-1302.
  • Vallebuona, G., Casali, A., Kracht, W., 2005, “Caracterización y modelación de las distribuciones de tamaño de burbujas en celdas de flotación con agitación mecánica”. Revista de Metalurgia, 41 (4), 243 - 250.
  • Kracht, W., Vallebuona, G., Casali, A., 2005, “Rate constant modelling for batch flotation, as a function of gas dispersion properties”, Minerals Engineering, 18 (11), 1067-1076.